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Experimental results are presented on the use of partial least squares (PLS) regression and
wavelength selection for the definition of models for visible-near-infrared (Vis-NIR) evaluation of
soluble solids content in fruits. First, the relatively easy to deal withsbut still not studied in the
literaturescase of cherry fruit is presented in detail. By using a very simple selection scheme,
involving the subsampling of the spectral interval from 600 to 1100 nm with a fixed step, accurate
models were found, consistently showing very favorable combinations of SEC and SEP values, in
the 0.50 °Brix range for a total variation of about 15 °Brix. Apricot fruit represented a more difficult
species, and wavelengths to be included in the calibration had to be individually selected for the
best results. Nevertheless, parsimonious models could be found, including a total of 38 spectral
lines and leading to SEP values at the 0.75 °Brix level.
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INTRODUCTION

Visible-near-infrared (Vis-NIR) spectroscopy is an
established technique for determining chemical con-
stituents in agricultural products (Williams and Norris,
1987; Osborne et al., 1993) which is gaining increased
attention in the field of postharvest quality evaluation
of fruits, comparable to that devoted to different physical
methods. Most recently, McGlone and Kawano (1998)
determined with very good accuracy both dry matter
and soluble solids content (SSC) of kiwifruit, while
firmness was not satisfactory predicted; Peiris et al.
(1997; 1998) determined soluble solids content of peaches
and processing tomatoes. Carlini et al. (1999) presented
preliminary results on the use of wavelength selection
methods for the accurate evaluation by PLS regression
of soluble solids in cherries, apricots, loquat fruits, and
peaches.

Experiments reported here were primarily concerned
with Vis-NIR interactance measurement of SSC on
fruits, highly correlated to total sugar content, one of
the most important quality parameters (Reid, 1992).

Fresh fruits are invariably characterized by a very
high moisture content, and spectral regions in the
Herschel-infrared, from 700 to about 1100 nm, assume
a particular relevance. This interval presents a few
distinctive advantages: water absorption peaks are less
strong and broad and do not risk to mask spectral
information correlated to low concentration constitu-
ents; light can penetrate much farther in fruits of many
different species. Wavelengths belonging to the visible
part of the electromagnetic spectrum are sometimes also
includedschlorophyll and anthocyanins absorption bands,
among others, belong to this spectral range. Sugiyama
(1999) found on both “Andes” and “Earl’s” melon culti-
vars a high (inverse) correlation between absorbance at

676 nm and sugar content (°Brix) and furthermore the
spectral range between 450 and about 690 nm consis-
tently showed an high (inverse) correlation.

Partial least squares (PLS) regression (Geladi and
Kowalski, 1986) was used early in the development of
models for fruits and vegetables, and many applications
are still reported today (see, e.g., Slaughter et al., 1996;
McGlone and Kawano, 1998). Recently however, many
researchers have closely scrutinized the working hy-
pothesis that processing the full spectrum (hundreds of
wavelengths), or at least a large subset of contiguous
lines, can always lead to the best results: suited models
may often involve few tens of carefully selected wave-
lengths in PLS-like schemes. For example, Centner et
al. (1996) developed an elimination method, called
uninformative variable elimination-PLS (UVE-PLS),
and tried it on chemical data sets: it outperformed in
every instance standard full spectrum PLS, chiefly when
many nonuseful wavelengths were known to exist.
Osborne et al. (1997; 1999) proposed a forward selection
technique for the automatic identification of wave-
lengths to be included in a PLS regression model. In
the evaluation of kiwifruit SSC, the best results were
obtained beginning with a set of four or eight useful
wavelengths plus some casually chosen and utilizing
leaps 23 wavelengths long in the search. The calibra-
tions obtained improved on full spectrum PLS 99% of
the time in a “Monte Carlo” setup. Effects of preprocess-
ing operations have not been discussed in detail, with
results on standardized and unstandardized data grouped
together.

The study reported here was particularly aimed at
an assessment of the usefulness of some forms of
wavelength selection in the building of PLS models for
SSC in cherry and apricot. In the first part, simple
subsampling schemes will be discussed in detail and
compared to reference full spectrum models for cherry.
The last part of the paper will be concerned with
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calibrations for apricot fruit, probably more interesting
from the point of view of prospective practical applica-
tions, but which need a less straightforward selection
process in order to obtain satisfying performance.

The species studied have never been considered before
for Vis-NIR nondestructive quality determination, with
or without the adoption of modern regression techniques
or wavelength selection methods (Kays, 1999).

MATERIALS AND METHODS

Fruit Sample Sets. Cherry fruits (Prunus serotina L. cv.
“Ravenna”) for the experimentation were hand-harvested from
a small orchard close to Viterbo, Italy, at the beginning of
Summer 1998, selecting first class samples, uniform in size
and color, then immediately brought to the laboratory, and
evaluated at room temperature (20 ( 1 °C). The same
procedure was repeated many times, for about 3 weeks. Apricot
fruits (Prunus armeniaca L. cv. “Boccuccia Spinosa” and
“Errani”) were hand harvested close to Rome during the
months of June and July 1998 and were then processed
similarly to cherries.

Vis-NIR Method and Constituent Measurement. Ab-
sorption spectra were measured on each intact fruit using a
fast (1.8 scans/s) Vis-NIR (400-2500 nm) spectrophotometer
NIRSystems (Silver Spring, MD) model 6500, with 2 nm
spectral resolution. A fiber optic probe, about 1.2 m long and
working by interactance, was fitted to the system, consisting
of the following: a central bundle of fibers returning the light
and an outer ring, about 0.8 cm in diameter, emitting the light
interacting with the sample. For system management and
calibration NIRS-2 Version 4.00 package by Infrasoft Inter-
national, running under the Microsoft MSDOS operating
system, was adopted. Spectra were measured by hand-placing
the interactance probe against the fruit at a random position
along the equator. Fifteeen individual scans were averaged
for the recording of each spectrum

SSC readings were taken for flesh cut from the same
location on the fruit where the optical scans were conducted.
To precisely evaluate each reference SSC, fruit pulp was
slightly comminuted and centrifuged for 5 min by an ALC
micro centrifugette 4204. The supernatant was then analyzed
by a laboratory refractometer built by Officine Galileo
(Florence, Italy) model RG701. For the ripest cherry samples,
rich in interfering red-black pigments, a small quantity of
PVPP (polyvinylpoly-pyrrolidone) was added to the Eppendorf
vial containing the pulp during the centrifugation in order to
facilitate the ensuing refractometer reading.

Data Analysis Generalities. Prior to model building, a
randomized procedure, not followed by any manual manipula-
tion, split the whole spectrum/reference SSC data sets into a
calibration set, used for model optimization, and a smaller
prediction set, used for validation on independent samples.

Preliminary experiments led to the adoption of a slightly
modified form of PLSsinvolving the normalization of the
residuals at the end of each iterationsas our multivariate
regression algorithm. It was systematically able to produce
better final results than plain PLS on the considered data set,
both cherries and apricots, irrespective of the other modeling
choices. Calibrations have been further studied only if their
complexity in terms of number of PLS factors was below a
maximum order, established case by case by an 8-fold cross-
validation strategy, that is the minimum of standard error of
cross validation (SECV) versus number of factors, the latter
varying from 1 to 10.

The most commonly used statistics, i.e., SEC, SEP, and R2,
were computed together with prediction bias, that is the
systematic component (the mean value) of the errors when the
model is applied to prediction set samples. Finally, the
adimensional ratio called standard deviations ratio, SDR (

Data Std Dev/SEP (Chang et al., 1998), is also reported.
Additionally, to better characterize apricot models quantile-
quantile plots (Venables and Ripley, 1997) have been computed

by using R statistical system (available free of charge
through http://www.r-project.org) running under Linux operat-
ing system.

Preprocessing Steps. These were very helpful in reducing
the adverse effects of the physical (vs chemical) sample
structure on the quantitative evaluation of the constituents
and were adopted in various combinations.

Derivation. Numerical derivation eliminated the spectra of
offset (I der.) and offset+slope (II der.) noninformative com-
ponents. Unfortunately, as a secondary unwelcome effect,
measurement noise could be greatly amplified. Smoothing
operations were therefore used, consisting of a preliminary
averaging over a fixed number of points (segment option). The
beneficial effect of derivativizing was often sensitive to the gap
chosen, i.e., the lag between each pair of data points processed
in the course of the computation.

Detrending correction (Barnes et al., 1989). In this case a
fit of each individual spectrum with a quadratic polynomial
was performed and the residual utilized in the calibration.

MSC (Multiplicative Scatter Correction) (Isaksoon and Naes,
1988). This is one of the most widely used methods. Each
spectrum was linearly regressed against the mean spectrum
and the fitted constants used to compute the corrected
spectrum.

SNV (Standard Normal Variate) correction (Barnes et al.,
1989). Each spectrum separately was normalized to null mean
value and unit variance.

Wavelength Selection. In the first place simple spectral
selections were studied, with wavelengths equally spaced in
the restricted segment 600-1100 nm and not individually
picked. Therefore, after the computation of various combina-
tions of preprocessing steps, each spectrum was subsampled,
keeping only a sequence of wavelengths spaced from a
minimum step equal to 2 nm (corresponding to the full
acquired spectrum) to a maximum of 20 nm. Sequences shifted
forward half the corresponding step were also constructed: for
instance, for an 8 nm step, 604 nm, 612 nm, 620 nm, and so
on, in addition to the standard 600 nm, 608 nm, 616 nm, ...
The first part of each acquired spectrum, from 400 nm up to
600 nm, was completely discarded since it was affected by
measurement noise.

For apricot suited wavelength intervals were found by way
of trial and error procedures: starting with the full Vis-
Herschel interval from 600 to 1100 nm, possibly subsampled
with a fixed step as for cherry, noninformative segments were
tentatively purged and the resulting performance evaluated.

RESULTS AND DISCUSSION

Cherry Fruit. Calibration and validation sets in-
cluded 100 and 58 samples, respectively, and had the
levels of soluble solids shown in Table 1. A second
derivative pretreatment computed with a 10 point gap
invariably led to the best performances in predicting
SSC.

The first calibrations, using 2 and 10 nm selection
steps, clearly indicated that utilizing a maximum of 10
PLS factors, as suggested by the 8-fold cross-validation
procedure, was indeed reasonable, albeit slightly unex-
pected for the Vis-Herschel-Infrared interval, usually
characterized by broad and “smooth” peaks. We checked

Table 1. Soluble Solids Level in Calibration and
Prediction Cherries and Apricots (°Brix)

samples mean std dev min. max.

Cherries
total 158 13.69 2.96 8.42 23.55
calibration 100 13.71 3.04 8.42 23.55
prediction 58 13.65 2.86 9.60 20.85

Apricots
total 162 11.40 1.95 7.45 17.00
calibration 100 11.40 1.85 7.80 16.70
prediction 62 11.41 2.12 7.45 17.00
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this number by varying the number of cross-validation
groups in the range from 4 to 10, and in all the cases
the same value (1 was found by the automatic software
procedure. As a rule, SECV(10 factors) values were
equal to about 0.75 × SECV(6 factors) and about 0.8 ×
SECV(8 factors). In fact, both Osborne et al. (1997) on
kiwifruits and Slaughter (1996), on tomatoes, employed
a large number of factorssin the range from 10 to 30s
while dealing with the same spectral interval. Osborne
et al. (1997), in particular, used as many as 19 and 25
factors for unstandardized and standardized data, re-
spectively, on the basis of a preliminary full spectrum
calibration. In contrast with this approach, Bangalore
et al. (1996) tried to jointly optimize the number of PLS
factors and the choice of the individual wavelengths.
Garrido Frenich et al. (1995), however, had found no
evidence that the additional computational effort was
really worth implementing.

For 10 PLS factors the first five plots of Figure 1
depict the resulting model accuracy, in terms of SEC
(A) and SEP (B), as a function of the subsampling step
and for five different combinations of the remaining
pretreatments. The possible elimination of a couple of
outliers is labeled out. A sixth plot, labeled (b), is
discussed below.

For steps increasing from 2 to 10 nm and a corre-
sponding large drop in the number of retained wave-
lengths (from 240 to 48), SECs did not grow appreciably,
the largest increase taking place for MSC, Seg ) 1
preprocessing options (Figure 1, (2)): from a minimum

of 0.49 °Brix for a 4 nm step to a maximum of 0.52 °Brix
for a 10 nm step. For the combination labeled (+) in
Figure 1 the increase is as small as 0.01 °Brix and
definitely not statistically significant, from a minimum
value of 0.49 °Brix, for 6 nm, to 0.50 °Brix, for 10 nm.
More generally, except a “crisis” for the 14 nm step,
SECs grow very slowly and, for the (+) series, and for
a 20 nm step the SEC was still 0.54 °Brix.

By reducing the amount of spectral data processed
by the regression algorithm while not considering at all
the chemical assignment of each particular wavelength
one would rather expect a sizable accuracy decrease on
the calibration set, easily attributable to the elimination
of useful information. The present findings suggest that
the adopted PLS algorithm works better when spectral
data is less correlated, thanks to the use of a moderately
large step in the selection process. For steps as large
as 10 nm, any possible information loss, probably small
indeed due to the high collinearity, appears well com-
pensated by a better working of the algorithm.

The foregoing considerations are at least qualitatively
consistent with the findings of Osborne et al. (1997) who
obtained the best results by using a leap 23 wavelengths
long (corresponding to 76 nm for a 3.3 nm-spectral
resolution apparatus) in their circular search scheme.
The experimental setup was however different from
ours, involving a different sampling technique, based
on a fast photodiode array detector (Osborne et al.,
1999). Furthermore, at variance with McGlone and
Kawano (1998), the authors did not make use of deriva-
tive preprocessing operations, expected to appreciably
reduce the correlation between neighboring data points.
It should also be noted that the specific search scheme
used does not exclude at all the possibility that many
adjacent wavelengths could end up selected by the
algorithm.

Also, Lammertyn et al. (1998) found useful a 10-fold
subsampling/averaging of the spectra (acquired with 0.5
nm resolution) prior to the subsequent preprocessing
operations. This approach bears some resemblance to
that studied here, especially so if the preprocessing and
wavelength selection operations were interchanged.
Although, Lammertyn and co-workers did not discuss
the effect of varying the subsampling step on models
for soluble solids.

Notably, every sequence of models attained the mini-
mum SEP for a 10 nm step, that is only one wavelength
in every five acquired, half the size of the spectral
interval corresponding to the gap (i.e. 2 nm by 10 points
divided by 2). The most favorable set of preprocessing
options, leading to the lowest SEP, is that including
MSC scattering correction, with the elimination of two
outliers and a smoothing over a three-point segment
(Figure 1, (+)). Alternatively, very similar resultssonly
slightly worse in terms of SEPscould be obtained
without any form of preliminary smoothing (Figure 1,
(×)).

Figure 1, series (b), depicts summarizing figures of
merit of calibrations involving the same preprocessing
steps as for (+) series but including wavelengths
forward shifted half the subsampling step, that is
“maximally different” from the former but equally
spaced. Interestingly, whereas very similar trends can
be observed on the SEC plot, the computed SEP value
for a 10 nm step, 0.59 °Brix, is as much worse than the
average typical of 2-8 nm step calibrations, ∼0.54 °Brix,
as the corresponding SEP in series (+), 0.49 °Brix, is

Figure 1. SECs (A) and SEPs (B) for cherry fruit as a function
of the subsampling step and for six different preprocessing
combinations (10 PLS factors): (]) SNV&Det, Seg ) 5; (0)
SNV&Det, Seg ) 1; (2) MSC, Seg ) 1; (×) MSC, out, Seg ) 1;
(+) MSC, out, Seg ) 3; and (b) MSC, out, Seg ) 3, shifted.
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better. This result is a strong indication that the five
series discussed above are characterized not only by
reduced collinearities but also by combinations of espe-
cially favorable wavelengths if compared with different
equally spaced choices. It can also per interpreted as
recommending the individual selection of spectral lines
to be included in the model, when dealing with more
difficult species.

In Table 2 we report complete statistics of calibrations
involving from 6 to 10 PLS factors, 2 and 10 nm
selection steps, in the pretreatment conditions labeled
as (+) in Figure 1 (MSC, out, Seg ) 3). In particular, 9
and 10 factor calibrations performed very well in every
respect, both in terms of SEC and SEP values, small
and similar to each other, in terms of Bias, in fact as
low as one tenth of the mean errors, and finally in terms
of SDR, larger than 5 and close to 6. The second series
of models consistently attains better SDR figures, up
to 8% for 6 factors.

To further investigate some of the points discussed
above we also analyzed calibrations involving only eight
factors (Figure 2), that is two less than the number
suggested by the cross-validation procedure. A trend
already visible in Figure 1, toward one more especially
favorable condition for a 20 nm step, becomes much
more evident here. However, only for a 10 nm step the
whole set of plots simultaneously shows a minimum
SEP, exactly as happens in Figure 1 for 10 factors.
Overall, it is a little puzzling that a selection step
exactly half the gap in the derivative led to the lowest
prediction errors, even if we argued above that this
effect is partly due to an especially favorable initial

offset in the subsampling of the spectra. Therefore, we
investigated if our set of preprocessing options was still
optimal for eight factors, to understand if the relation
found was indeed robust to a variation in the number
of PLS factors. SEP statistics obtained by using a nine
point gap are appreciably lower (Figure 2, (9)), albeit
characterized by overall trends confirming those dis-
cussed above. More generally, changing the gap below
8 or above 10 points led to plots either qualitatively
similar to those displayed in Figures 1 and 2 or flattened
out, with neither step favored over the others and
definitely higher values.

Figure 3 shows the coefficient vector of the model
labeled as (+) in Figure 1, for 10 factors and a 10 nm

Figure 2. SEPs for cherry fruit as a function of the subsam-
pling step and for seven different preprocessing combinations
(eight PLS factors): (]) SNV&Det, Seg ) 5; (0) SNV&Det,
Seg ) 1; (2) MSC, Seg ) 1; (×) MSC, out, Seg ) 1; (+) MSC,
out, Seg ) 3; and (9) MSC, out, Gap ) 9, Seg ) 3.

Table 2. Statistics of Models for Cherry as the Number
of PLS Factors Changes: SEC, SEP, and Bias in °Brix

factors SEC R 2 SEP Bias SDR

Step 2 nm
6 0.74 0.94 0.86 0.06 3.44
7 0.66 0.95 0.74 0.10 4.00
8 0.64 0.95 0.70 0.15 4.23
9 0.52 0.97 0.56 0.04 5.29

10 0.49 0.97 0.52 0.04 5.70

Step 10 nm
6 0.70 0.94 0.79 0.06 3.72
7 0.66 0.95 0.73 0.10 4.07
8 0.64 0.95 0.68 0.15 4.35
9 0.53 0.97 0.53 0.05 5.57

10 0.50 0.97 0.49 0.04 5.99

Figure 3. Coefficient vector for a 10 PLS factors model for
cherry (step ) 10 nm, MSC, out, Seg ) 3), constant term )
16.59. Inset, the same multiplied by standard deviation at each
wavelength.

Figure 4. Correlation coefficient between SSC and absorption
at each wavelength: (0) cherry, raw spectra; (9) cherry, second
derivative spectra; and (+) apricot, raw spectra.

Figure 5. Representative models for cherries on the interval
700-1100 nm, compared in terms of SDR values to results
presented before (step ) 10 nm, MSC, out, Seg ) 3).
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step, characterized by a typical oscillatory-type behavior
and remarkably consistent with spectroscopic studies
of model solutions (Williams and Norris, 1987; Work-
man, 1996). Wavelengths assigned a small regression
coefficient can have a sensible effect on the prediction
due to a large range of variation. In fact, a much more
uniform distribution of amplitudes is evident in the
Figure 3, inset, which displays the same vector with
each point multiplied by the respective data standard
deviation.

Quite unexpectedly, raw spectra were moderately
correlated, R = +0.6, with SSC in the chlorophyll band,
probably due to the combined effect of different con-
stituents (Figure 4, (9)). It should be stressed, however,

that at variance with other fruits studied by our group
(by comparison, Figure 4, (+), shows the behavior of
apricot) cherry is very low in chlorophyll content in all
the considered ripening stages (Looney et al., 1996). On
the other hand, a correlation plot of preprocessed
spectra (MSC, second derivative), Figure 4, (9), dis-
played a broad negative peak centered at about 620 nm.
Comfortingly, Delwiche et al. (1987) found a reflectance
increase at about 600 nm during maturation of other
stone fruits, notably peaches.

Figure 5 compares calibrations involving only wave-
lengths beyond 700 nm with a few noteworthy models
already discussed. For 10 factors the elimination of the
Vis interval led to a reduced accuracy, whereas for eight
factors no significant differences could be observed. In
the former case, slightly better statistics were obtained
by the use of a 12 points gap. Overall, the contribution
of the visible portion appears to be not negligible. A
better feeling of its entity can be obtained considering
that calibrations including this restricted interval alone
are characterized by SEP values at the 1.1 °Brix level,
a remarkable result, especially if compared with SSC
range of variation.

Apricot Fruit. Calibration and validation sets in-
cluded 100 and 62 samples, respectively, and had the
levels of soluble solids shown in Table 1.

As for cherries, a second derivative pretreatment,
computed with a 10 point gap and a three point
segment, invariably led to the best performances in
predicting SSC. Likewise, since the beginning scatter
effects were treated by MSC for consistency with some
of the well performing models for cherry, but in fact
different schemes (i.e., SNV, detrendizing) led to very
similar results, with figures of merit typically differing
by not more than 3-4%, even without any correction
at all. The usual 8-fold cross validation procedure
suggested in this case the use of a maximum of eight
PLS factors, a value which was checked by the same
means already discussed above. As a rule, SECV(8
factors) values were equal to about 0.75 × SECV(4
factors) and about 0.9 × SECV(6 factors).

Figure 6. SECs and SEPs (°Brix) for apricot fruit as a
function of the subsampling step (MSC, Gap ) 10, Seg ) 3):
(+) simple subsampling and (]) subsampling followed by
individual selection.

Figure 7. SDR statistics for apricot as a function of the
segment used in the computation of the numerical derivative
(step ) 8 nm, MSC, Gap ) 10).

Figure 8. Quantile-quantile plots of model errors (°Brix) for prediction set apricot samples (eight PLS factors): (A) simple
subsampling (step ) 8 nm) and (B) subsampling followed by individual selection.

Table 3. Statistics of Models for Apricot as the Number
of PLS Factors Changes: SEC, SEP, and Bias in °Brix

factors SEC R 2 SEP Bias SDR

Simple Subsampling
6 0.75 0.84 1.01 0.08 1.94
7 0.68 0.86 0.91 0.03 2.14
8 0.66 0.87 0.87 0.02 2.24

Subsampling + Selection
6 0.73 0.85 1.00 0.03 1.95
7 0.68 0.86 0.88 0.03 2.22
8 0.62 0.89 0.75 0.05 2.60
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Calibrations optimized on the spectral segment going
from 600 to 1100 nm led to both SECs and SEPs
appreciably worse (Figure 6, (+)) if compared to the
easier to deal with cherry fruit, also due to the lower
number of factors reliably usable, that is eight instead
of 10. Consistently, SEC values were comparable for
eight factors (∼0.6 °Brix), whereas SEP values were
definitely higher in the apricots case, signaling a more
pronounced tendency toward overfitting, counteracted
by the cross-validation procedure. Remarkably, how-
ever, when studying the effect of the subsampling
operation a general trend could be confirmed once
more: even for steps larger than 10 nm values did not
grow rapidly and for steps varying from 2 nm (240
wavelengths) up to 8 nm (60 wavelengths) essentially
equivalent results could be obtained.

To investigate if these results could be somewhat
improved by a more careful selection of wavelengths
included in the model, a few subsegments were tenta-
tively purged from the full Vis-Herschel interval, while
keeping both the spectral range from 800 to 900 nm and
a window around 1010-1030 nm, known from the
literature to be highly informative (see, e.g., Workman,
1996).

Eventually, four disjoint segments remaineds630-
680 nm, 720-750 nm, 800-940 nm, and 950-1020
nmsa 50 nm wide interval in the chlorophyll band
included, which in the case of apricots displayed a much
more conventional behavior (Figure 4). Plots labeled as
(]) in Figure 6 present summarizing statistics of the
latter calibrations (eight PLS factors), compared for a
varying subsampling step to those discussed above,
Figure 6, (+). The best results were evidently obtained
for 8 nm, and a corresponding total of 38 (vs 60)
wavelengths kept in the model, where SEP could be
lowered from 0.87 to 0.75 °Brix and SEC could be
slightly reduced too, from 0.66 to 0.62 °Brix. Unfortu-
nately, the trend manifested for steps larger than 10
nm appear not easy to understand in detail. Arguably,
some very general assumptions are no longer valid here,
consider, f.i., that less than 26 wavelengths end up
included in the model, a number becoming very close
to that of PLS factors.

In Table 3 we report complete figures of merit of
calibrations involving from 6 to 8 PLS factors and a 8
nm step, with or without the subsequent selection of
most suited wavelength intervals. In Figure 8, quan-
tile-quantile plots of prediction errors of eight factor
calibrations are shown, in general very useful to diag-
nose possible diseases affecting the regression model.
Indeed, only minor differences can be remarked, among
which a reassuring slightly more linear (“more Gauss-
ian”) behavior in plot (B) of the central tract between
-1 and +1 quantiles.

By varying the segment used in the computation of
the derivative the soundness of the additional selection
made could be confirmed, in particular its robustness
to variations in the pretreatment options: Figure 7
shows consistently better SDR values, up to +0.34 for
the reference choice of three points. A different selection,
tentatively tried during the calibration development
process, which excluded a spectral segment between 910
and 930 nm to obtain marginally improved SEP figures
(about 0.73 °Brix for a 8 nm step), could not pass this
test and was not further studied.

On the other hand, changing the gap option nullified
by and large (data not shown) the beneficial effect of

every tried wavelength selection strategy, thus confirm-
ing the high sensitivity of the models to such parameter,
already pointed out above in relation to eight factor
calibrations for cherry. Comfortingly, our experience
clearly suggests that a suitable gap can be defined very
early in the calibration development process, not changed
anymore during the ensuing refinements, involving
forms of wavelength selection or whatever.

Not including the visible portion of the spectrum led
for apricot to worse models, characterized by SEPs at
the 0.87 °Brix level for a 8 nm step and 31 wavelengths
included, albeit still improving on the simply sub-
sampled case, at the 0.90 °Brix level in the same
conditions.

CONCLUSION

Short wave Vis-NIR reflectance (600-1100 nm) could
be used to accurately predict °Brix on whole cherry.
Common data pretreatments were effective for removal
of baseline variation. Processing only a subset of the
spectrum, down to 48 data points, did not worsen the
predictive accuracy, which for a particular choice of the
subsampling offset could even be slightly but consis-
tently improved. For apricot, wavelengths to be included
in the model had to be individually selected for the best
results. However, in this case too sufficiently accurate
models could be constructed on the restricted Vis-
Herschel interval, readable by affordable spectropho-
tometers.

In the future it will be important to extend the
investigation to calibrations including many varieties
for each species, possibly coming from different orchards
and multiple harvest years. In the past this general
concern was deemed very critical for the prospective
application of such techniques: the foreseeable cost of
online sorting and grading systems was so high to
believe that the first machines available would be
installed only at big packinghouses, collecting produce
coming from a lot of very unlike orchards. Today this
point of view begins to change thanks to the develop-
ment of cheaper systems, which could well be used on
a local basis (Osborne et al., 1999). In this new perspec-
tive it will be of the utmost importance to define truly
effective automatic or semiautomatic wavelength selec-
tion procedures, optimized for the concerned application
field and usable by lightly trained operators.

ACKNOWLEDGMENT

This research was founded by MURST (ex 40%)
project “Fisiologia postraccolta e aspetti qualitativi dei
prodotti ortofrutticoli” and supported by the Italian
Postharvest Working Group.

LITERATURE CITED

Bangalore, A. S.; Shaffer, R. E.; Small, G. W. Genetic algorithm
based method for selecting wavelengths and model size for
use with partial least-squares regression: application to
near-infrared spectroscopy. Anal. Chem. 1996, 68, 4200-
4212.

Barnes, R. J.; Danoa, M. S.; Lister, S. J. Standard normal
variate transformation and de-trending of near-infrared
diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772-
777.

Carlini, P.; Massantini, R.; Mencarelli, F. Wavelength selection
methods for PLS-based Vis-NIR evaluation of SSC in fresh
fruits. To appear In Proceedings of the NIR’99, 9th Inter-

Vis-NIR Measurement of Soluble Solids in Cherry and Apricot J. Agric. Food Chem., Vol. 48, No. 11, 2000 5241



national Conference on Near-Infrared Spectroscopy; Verona,
Italy, 13-18 June 1999.

Centner, V.; Massart, D.-L.; de Noord O. E.; de Jong, S.;
Vandeginste, M. B.; Sterna, C. Elimination of uninformative
variables for multivariate calibration. Anal. Chem. 1996,
68, 3851-3858.

Chang, W. H.; Chen, S.; Tsai, C. C. Development of a universal
algorithm for use of NIR in estimation of soluble solids in
fruit juices. Trans. ASAE 1998, 41, 1739-1745.

Delwiche, M. J.; Tang, S.; Rumsey, W. J. Color and optical
properties of clingstone peaches related to maturity. Trans.
ASAE 1987, 30, 1873-1879.

Garrido Frenich, A.; Jouan-Rimbaud, D.; Massart, D. L.;
Kuttatharmmakul, S.; Martinez Galera, M.; Martinez Vidal,
J. L. Wavelength selection method for multicomponent
spectrophotometric determinations using partial least
squares. Analyst 1995, 120, 2787-2792.

Geladi, P.; Kowalski, B. R. Partial least-squares regression:
a tutorial. Anal. Chim. Acta 1986, 185, 1-17.

Isaksoon, T.; Naes, T. The effect of multiplicative scatter
correction (MSC) and linearity improvement in NIR spec-
troscopy. Appl. Spectrosc. 1988, 42, 1273-1284.

Kays, S. J. Non destructive quality evaluation of intact, high-
moisture products. NIR News 1999, 10, 12-15.

Lammertyn, J.; Nicolaı̈, B.; Ooms, K.; De Smedt, V.; De
Baerdemaeker, J. Nondestructive measurement of acidity,
soluble solids, and firmness of Jonagold apples using NIR-
spectroscopy. Trans. ASAE 1998, 41, 1089-1094.

Looney, F.; Webster, A. D.; Kupperman, E. M. Harvest and
Handling Sweet Cherries for the Fresh Market. In Cher-
ries: Crop Physiology, Production and Uses; Webster, A. D.,
Looney, D. E., Eds.; CAB International: 1996.

McGlone, V. A.; Kawano, S. Firmness, dry-matter and soluble-
solids assessment of postharvest kiwifruit by NIR spectros-
copy. Postharvest Biol. Technol. 1998, 13, 131-141.

Osborne, B. G.; Fearn, T.; Hindle, P. H. Practical NIR
Spectroscopy with Applications in Food and Beverage Analy-
sis, 2nd ed.; Longman Scientific and Technical: U.K., 1993.

Osborne, S. D.; Jordan, R. B.; Künnemeyer, R. Method of
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